七.抽屜問(wèn)題
三個(gè)例子:
?。?)3個(gè)蘋(píng)果放到2個(gè)抽屜里,那么一定有1個(gè)抽屜里至少有2個(gè)蘋(píng)果。
(2)5塊手帕分給4個(gè)小朋友,那么一定有1個(gè)小朋友至少拿了2塊手帕。
?。?)6只鴿子飛進(jìn)5個(gè)鴿籠,那么一定有1個(gè)鴿籠至少飛進(jìn)2只鴿子。
我們用列表法來(lái)證明例題(1):
放 法 |
①種 |
②種 |
③種 |
④種 |
第1個(gè)抽屜 |
3個(gè) |
2個(gè) |
1個(gè) |
0個(gè) |
第2個(gè)抽屜 |
0個(gè) |
1個(gè) |
2個(gè) |
3個(gè) |
從上表可以看出,將3個(gè)蘋(píng)果放在2個(gè)抽屜里,共有4種不同的放法。
第①、②兩種放法使得在第1個(gè)抽屜里,至少有2個(gè)蘋(píng)果;第③、④兩種放法使得在第2個(gè)抽屜里,至少有2個(gè)蘋(píng)果。
即:可以肯定地說(shuō),3個(gè)蘋(píng)果放到2個(gè)抽屜里,一定有1個(gè)抽屜里至少有2個(gè)蘋(píng)果。
由上可以得出:
題 號(hào) |
物 體 |
數(shù) 量 |
抽屜數(shù) |
結(jié) 果 |
(1) |
蘋(píng) 果 |
3個(gè) |
放入2個(gè)抽屜 |
有一個(gè)抽屜至少有2個(gè)蘋(píng)果 |
(2) |
手 帕 |
5塊 |
分給4個(gè)人 |
有一人至少拿了2塊手帕 |
(3) |
鴿 子 |
6只 |
飛進(jìn)5個(gè)籠子 |
有一個(gè)籠子至少飛進(jìn)2只鴿 |
上面三個(gè)例子的共同特點(diǎn)是:物體個(gè)數(shù)比抽屜個(gè)數(shù)多一個(gè),那么有一個(gè)抽屜至少有2個(gè)這樣的物體。從而得出:
抽屜原理1:把多于n個(gè)的物體放到n個(gè)抽屜里,則至少有一個(gè)抽屜里有2個(gè)或2個(gè)以上的物體。
再看下面的兩個(gè)例子:
(4)把30個(gè)蘋(píng)果放到6個(gè)抽屜中,問(wèn):是否存在這樣一種放法,使每個(gè)抽屜中的蘋(píng)果數(shù)都小于等于5?
?。?)把30個(gè)以上的蘋(píng)果放到6個(gè)抽屜中,問(wèn):是否存在這樣一種放法,使每個(gè)抽屜中的蘋(píng)果數(shù)都小于等于5?
解答:(4)存在這樣的放法。即:每個(gè)抽屜中都放5個(gè)蘋(píng)果;(5)不存在這樣的放法。即:無(wú)論怎么放,都會(huì)找到一個(gè)抽屜,它里面至少有6個(gè)蘋(píng)果。
從上述兩例中我們還可以得到如下規(guī)律:
抽屜原理2:把多于m×n個(gè)的物體放到n個(gè)抽屜里
,則至少有一個(gè)抽屜里有m+1個(gè)或多于m+l個(gè)的物體。
可以看出,“原理1”和“原理2”的區(qū)別是:“原理1”物體多,抽屜少,數(shù)量比較接近;“原理2”雖然也是物體多,抽屜少,但是數(shù)量相差較大,物體個(gè)數(shù)比抽屜個(gè)數(shù)的幾倍還多幾。
以上兩個(gè)原理,就是我們解決抽屜問(wèn)題的重要依據(jù)。抽屜問(wèn)題可以簡(jiǎn)單歸結(jié)為一句話(huà):有多少個(gè)蘋(píng)果,多少個(gè)抽屜,蘋(píng)果和抽屜之間的關(guān)系。解此類(lèi)問(wèn)題的重點(diǎn)就是要找準(zhǔn)“抽屜”,只有“抽屜”找準(zhǔn)了,“蘋(píng)果”才好放。
例1. 在某校數(shù)學(xué)樂(lè)園中,五年級(jí)學(xué)生共有400人,年齡最大的與年齡最小的相差不到1歲,我們不用去查看學(xué)生的出生日期,就可斷定在這400個(gè)學(xué)生中至少有兩個(gè)是同年同月同日出生的,你知道為什么嗎?
解:因?yàn)槟挲g最大的與年齡最小的相差不到1歲,所以這400名學(xué)生出生的日期總數(shù)不會(huì)超過(guò)366天,把400名學(xué)生看作400個(gè)蘋(píng)果,366天看作是366個(gè)抽屜,(若兩名學(xué)生是同一天出生的,則讓他們進(jìn)入同一個(gè)抽屜,否則進(jìn)入不同的抽屜)由“抽屜原則2”知“無(wú)論怎么放這400個(gè)蘋(píng)果,一定能找到一個(gè)抽屜,它里面至少有2(400÷366=1……1,1+1=2)個(gè)蘋(píng)果”。即:一定能找到2個(gè)學(xué)生,他們是同年同月同日出生的。
例2:有紅色、白色、黑色的筷子各10根混放在一起。如果讓你閉上眼睛去摸,(1)你至少要摸出幾根才敢保證至少有兩根筷子是同色的?為什么?(2)至少拿幾根,才能保證有兩雙同色的筷子,為什么?
解:把3種顏色的筷子當(dāng)作3個(gè)抽屜。則:
(1)根據(jù)“抽屜原理1”,至少拿4根筷子,才能保證有2根同色筷子;(2)從最特殊的情況想起,假定3種顏色的筷子各拿了3根,也就是在3個(gè)“抽屜”里各拿了3根筷子,不管在哪個(gè)“抽屜”里再拿1根筷子,就有4根筷子是同色的,所以一次至少應(yīng)拿出3×3+1=10(根)筷子,就能保證有4根筷子同色。
歸納小結(jié):解抽屜問(wèn)題,最關(guān)鍵的是要找到誰(shuí)為“蘋(píng)果”,誰(shuí)為“抽屜”,再結(jié)合兩個(gè)原理進(jìn)行相應(yīng)分析??梢钥闯鰜?lái),并不是每一個(gè)類(lèi)似問(wèn)題的“抽屜”都很明顯,有時(shí)候“抽屜”需要我們構(gòu)造,這個(gè)“抽屜”可以是日期、撲克牌、考試分?jǐn)?shù)、年齡、書(shū)架等等變化的量,但是整體的出題模式不會(huì)超出這個(gè)范圍。
行測(cè)更多解題思路和解題技巧,可參看2013年公務(wù)員考試技巧手冊(cè)。